Tình trạng giả mạo nhằm lừa đảo tài chính hiện nay diễn ra ngày một nhiều, với thủ đoạn ngày càng tinh vi. Chính điều này đã đặt ra bài toán, đòi hỏi các công nghệ xác thực, chống giả mạo phải ngày càng tiến bộ.

Giám đốc AI của Zalo, TS. Châu Thành Đức cho biết, việc chống giả mạo luôn là một thách thức lớn. Tại Zalo, những công nghệ này được liên tục cải tiến, cập nhật mô hình để ngăn chặn các hình thức giả mạo khác nhau.

Theo thống kê, chỉ trong 6 tháng đầu năm, Zalo đã phát hiện và ngăn chặn thành công khoảng 350.000 trường hợp giả mạo ảnh chân dung và 450.000 trường hợp giả mạo hình giấy tờ (CCCD và CMND).

Đây là nỗ lực rất lớn của đội ngũ Zalo AI trong “cuộc chiến” chống giả mạo xác thực người dùng điện tử (eKYC), nhằm bảo vệ tốt nhất người dùng sử dụng những dịch vụ do Zalo cung cấp.

Zalo AI đang góp phần không nhỏ trong cuộc chiến ngăn chặn lừa đảo trên không gian mạng.

Theo TS. Châu Thành Đức, có 3 hình thức giả mạo phổ biến nhất đang được sử dụng để chống lại việc xác thực người dùng điện tử (eKYC) hiện nay gồm: Deepfake giả mạo khuôn mặt, mô hình 3D (như ma-nơ-canh), chỉnh sửa thông tin giả căn cước công dân (CCCD) hoặc chứng minh nhân dân (CMND).

Với Zalo AI, các kỹ sư công nghệ luôn phải phân tích kỹ lưỡng để cải tiến mô hình. Ví dụ đối với deepfake, kẻ tấn công sẽ lấy hình ảnh tĩnh của người khác rồi tạo ra các cử chỉ chuyển động như cười, chớp mắt, nhép môi,… y như người thật.

Các hình ảnh này sẽ được dùng để giả mạo video selfie (chân dung) để camera thực hiện eKYC (định danh điện tử) ghi lại và nhầm lẫn là người thật.

Tuy nhiên, việc giả mạo trên sẽ để lại hiệu ứng recapture (chụp lại) màn hình. Dựa vào đặc điểm này, Zalo đã phát triển mô hình phát hiện replay attack (tấn công phát lại) để đảm bảo những video dữ liệu này bị chặn trong quá trình xác thực.

Thêm vào đó, để chống việc giả mạo trong xác thực eKYC, Zalo có cơ chế tự rà soát và khoanh vùng kiểm tra ngẫu nhiên. Khi phát hiện một kỹ thuật nào đó vượt qua được mô hình chống giả mạo, đội ngũ AI của Zalo sẽ nhanh chóng phân tích và cập nhật mô hình để chống lại kiểu tấn công đó.

Trong khoảng thời gian này, các lớp bảo vệ khác như danh sách cấm (blacklist) và truy vấn khuôn mặt (face retrieval) sẽ giúp ngăn chặn kẻ tấn công sử dụng lại thông tin cá nhân, tài khoản hay hình ảnh này để vượt qua hệ thống.

Đối với hình ma-nơ-canh, Zalo sử dụng các mô hình chống giả mạo 3D, có khả năng phân biệt mặt người tự nhiên và đối tượng 3D giả người.

Cùng với việc sử dụng mô hình AI phù hợp, đơn vị đa dạng hóa dữ liệu huấn luyện để đảm bảo mô hình luôn được học với những kiểu giả mạo 3D phổ biến nhất, những mô hình ma-nơ-canh có thể có trong thực tế.

Mỗi kiểu tấn công sẽ có những đặc điểm nhận biết riêng. Zalo đã xây dựng những mô hình AI chuyên biệt để nhận dạng từng loại thông tin bất thường một cách hiệu quả.

Đại diện Zalo AI cũng cho biết, tính chính xác, tiện dụng, cập nhật, xử lý nhanh và ổn định là những điểm mạnh khẳng định giá trị của Zalo eKYC đối với người dùng. Có thể nói, với những giải pháp tiên tiến và cam kết cải tiến không ngừng, những đơn vị tiên phong về công nghệ nói chung và AI nói riêng như Zalo eKYC đóng vai trò quan trọng trong việc xác thực thông tin trong thời đại số hóa hiện nay.